
Bounding the Resource Availability of
Activities with Linear Resource Impact

Jeremy Frank and Paul H. Morris
Computational Sciences Division

NASA Ames Research Center, MS 269-3
frank@email.arc.nasa.gov
Moffett Field, CA 94035

Abstract

We introduce the Linear Resource Temporal Network
(LRTN), which consists of activities that consume or produce
a resource, subject to absolute and relative metric temporal
constraints; production and consumption is restricted to lin-
ear functions of activity duration. We show how to construct
tight bounds for resource availability as a function of time
in LRTNs; for a broad class of problems, the complexity is
polynomial time in the time horizon h and the number of ac-
tivities n. Our approach extends a maximum flow formula-
tion previously used to construct tight bounds for networks of
events with instantaneous resource impact. We construct the
bounds in two parts: we make direct use of maximum flows
to find local maxima of the upper bound (and symmetrically
local minima of the lower bound), and we solve a related lin-
ear programming problem to find local minima of the upper
bound (and symmetrically local maxima of the lower bound).

Introduction
Scheduling requires creating an ordering for tasks that sat-
isfies temporal and resource constraints. Building sched-
ules by ordering events rather than assigning event times
preserves temporal flexibility; this permits the construction
of a family of schedules without determining exactly when
events take place while still guaranteeing that feasible solu-
tions exist. Preserving flexibility has two potential advan-
tages over finding a “ground” schedule. The first advan-
tage is protection from uncertainty that can lead to costly
rescheduling during schedule execution. Usually, schedul-
ing is performed assuming that the problem’s characteristics
are known in advance, do not change, and that the execution
of the schedule is deterministic. These assumptions are of-
ten violated in practice; for example, activity duration may
not be precisely known. The creation of temporally flexible
plans to protect against some execution time uncertainty was
described in (Morris, Muscettola, & Tsamardinos 1998) and
was successfully used in controlling a spacecraft (Jónsson et
al. 2000). The second advantage is in speeding up search
for feasible schedules. In this context, the goal is to reduce
the search space from the set of all start and end times of ac-
tivities to the set of all activity ordering decisions. This ap-

Not subject to U.S. copyright. This work was funded by the NASA
Exploration Technology Development Program.

proach to scheduling was studied in (Cheng & Smith 1995),
(Laborie 2003a) and (Policella et al. 2004).

Laborie (Laborie 2003b) describes a simple but expres-
sive formalism for scheduling problems called Resource
Temporal Networks (RTNs). Briefly, RTNs consist of a
Simple Temporal Network (STN) as described in (Dechter,
Meiri, & Pearl 1991), constant instantaneous resource im-
pacts (either production or consumption) for each timepoint,
and piecewise constant resource bounds. Instantaneous im-
pacts are useful for modelling reusable resources that are
allocated at the beginning of an activity and released at the
end, such as power usage on a planetary rover. Three tech-
niques have been developed to bound the resource avail-
ability for RTNs in polynomial time; the Balance Con-
straint (Laborie 2003a), the Resource Envelope (Muscettola
2002), and the Flow Balance Constraint (Frank 2004). These
bounds can be used to terminate the process of generating
temporally flexible schedules. In particular, both (Muscet-
tola 2002) and (Frank 2004) provide bounds that are tight,
in the sense that they justify the resource bound by proving
the existence of a feasible schedule. These latter techniques
can be used as sound and complete reasoning in search.

Many practical problems have activities that gradually
consume or replenish some resource like energy or data.
In this paper, we generalize the RTN problem class to Lin-
ear Resource Temporal Networks (LRTNs), where activities
consist of a start, end and duration, the resource impact of
activities is permitted to be linear in the duration of the ac-
tivity, and the resource bounds can be piecewise linear func-
tions rather than piecewise constants. We show how to con-
struct tight bounds for resource availability as a function of
time in LRTNs; for a broad class of LRTNs, the complex-
ity is polynomial time in the time horizon h and the number
of activities n. Our approach makes use of the maximum
flow formulation described in (Muscettola 2002). We iden-
tify some properties LRTNs must have in order for the max-
imum flow formulation to apply, then show how to reformu-
late LRTNs so that these properties hold. We make direct use
of maximum flows to find local maxima of the upper bound
(and symmetrically local minima of the lower bound). We
then adapt this approach and solve a related linear program-
ming problem to find local minima of the upper bound (and
symmetrically local maxima of the lower bound).

Notation and Definitions
We will assume LRTNs have a single resource. We will also
assume a constant resource upper bound Rub and a lower
bound of 0, and that the resource initially has Rub available
capacity. This easily generalizes to varying initial capacity,
piecewise constant upper bounds, and (with some additional
work) to piecewise linear upper and lower bounds.

Let A be the set of all activities of an LRTN and n =
|A|. Let A ∈ A be an activity. Let As be the start event
of activity A, and let Ae be the end event of A. If G is
a ground schedule, AG

s denotes the value of As in G, and
similarly for AG

e . Activity durations and resource rates are
denoted by Ad and Ar, respectively. If Ar < 0, then A is
said to be a consumer; if Ar > 0, then A is a producer.

Each activity A has associated with it a constraint:

As + Ad = Ae

Let E be the set of timepoints (start or end times of activi-
ties) and suppose E1, E2 ∈ E . There may be many simple
temporal constraints of the form

x1 ≤ E1 − E2 ≤ x2

We let the “dummy” activity H indicate the scheduling hori-
zon, thus Hs = 0, He = h and (obviously) Hd = h. Ab-
solute constraints on events are then translated into simple
temporal constraints between events and Hs or He. (For
example, the constraint As ∈ [x1, x2] translates to x1 ≤
As − Hs ≤ x2.) Recall that an STN can be transformed
into a distance graph (by expressing all the constraints as
upper bound constraints). For a consistent STN, we denote
the shortest path distance from a timepoint E1 to a time-
point E2 in the distance graph by d(E1, E2). This provides
an upper-bound on the temporal distance from E1 to E2;
thus, EG

2 −EG
1 ≤ d(E1, E2) in every grounded schedule G.

Note that d(Hs, E) and −d(E,Hs) provide absolute upper
and lower bounds on E; we denote these by Eub and Elb,
respectively. An STN may be regarded as a concise repre-
sentation of a flexible schedule.

Given a ground schedule G, we denote by AvailG(t) the
available resource at t in G:

AvailG(t) =
∑

A∈A|AG
e ≤t

ArAd +
∑

A∈A|AG
s ≤t<AG

e

(t−AG
s)Ar

.
We denote by Lmax(t) the maximum available resource

at a time t over all schedules, and by Lmin(t) the minimum
available resource at t. Thus, Lmax(t) = maxG AvailG(t)
and similarly for Lmin(t). We say G justifies Lmax(t) if
Lmax(t) = AvailG(t). We denote maxt Lmax(t) by L+

max

and mint Lmax(t) by L−
max (similarly for L+

min and L−
min).

Note that Lmax and Lmin are functions that tightly bound
the availability of the schedules; we call these the upper and
lower envelopes, respectively, following (Muscettola 2002).

The results of this paper are limited to the case where the
activity durations and resource consumption rates are con-
stant and provided as inputs to problem instances; to em-
phasize this, we will henceforth denote them by ad and ar

for an activity A.

The theory of maximum flows is described in standard
textbooks, for example (Ahuja, Magnanti, & Orlin 1993).
Let F be a flow graph and flow a flow; we will denote pipes
of the flow graph by p. As in (Muscettola 2002), we will
denote the residual capacity of a flow over a subset of the
flow graph G ⊂ F by rflow(G). That is, rflow(G) denotes
the cumulative remaining capacity of pipes p ∈ G reachable
from the source for the maximum flow.

We introduce the following definitions:

Definition 1 Given an LRTN, we define the instants I as⋃
E∈E({Elb} ∪ {Eub}).

Definition 2 Given an LRTN, at time t an event E ∈ E is
pending at t if Elb ≤ t ≤ Eub, open at t if t ≤ Elb and
closed at t if Eub ≤ t. An activity A is closed if Ae is
closed, open if As is open, completely pending if As and Ae

are pending, and partially pending otherwise.1

Definition 3 Given an LRTN and a pair of activities A and
B, A anti-precedes B if d(Ae, Be) ≤ 0.2

Definition 4 Given an LRTN, a set of activities S is a pre-
decessor set if, when activity S ∈ S, then every activity T
that S anti-precedes is also in S.

Definition 5 Given an LRTN and a ground schedule G, G is
split at t if there is some activity A such that AG

s < t < AG
e .

A schedule that is not split at t is intact at t.

Finding the Envelope of an RTN
in Polynomial Time

Both RTNs and LRTNs can be solved using chronological
search over ordering decisions. At any point in chronolog-
ical search, if L−

max < 0 or L+
min > Rub, or any tempo-

ral constraints are violated, then an unavoidable conflict has
been introduced and backtracking is necessary. If L−

min < 0
or L+

max > Rub then at least one schedule leading to a vio-
lation of the resource bounds exists, so at least one ordering
decision is necessary to eliminate this schedule. Finally, if
L−

min ≥ 0 and L+
max ≤ Rub, then all schedules consistent

with the temporal constraints are also consistent with the re-
source constraints. The resulting RTN or LRTN represents
a family of schedules, or a temporally flexible schedule.

In this section we review the algorithm used in (Muscet-
tola 2002) to find Lmax for RTNs in polynomial time, which
involves a maximum flow formulation. Maximum flow the-
ory is useful for solving problems that match reward and
shared costs in an optimum way. This can be exploited in
scheduling where the “costs” of production events are the
consumption events that necessarily precede them.

Suppose we are given an RTN with c(X) denoting the
resource impact of event X . To find the value of the sched-
ule justifying Lmax(t), a maximum flow problem is con-
structed using all anti-precedence links derived from the arc-
consistent STN. The rules for building the flow problem to

1Note an event may be both pending and open/closed, but an
activity with duration > 0 is in only one state.

2Implies Be − Ae ≤ 0, i.e., every part of B non-strictly pre-
cedes some part of A, in every schedule.

find Lmax(t) are as follows: all pending events are repre-
sented by nodes of the flow problem. If d(X, Y) ≤ 0 then
the flow problem contains an arc X → Y with infinite ca-
pacity. If c(X) > 0 then the problem contains an arc σ → X
with capacity c(X). If c(X) < 0 then the problem contains
an arc X → τ with capacity |c(X)|. (The flow problem
for Lmin(t) is constructed similarly, except if c(X) > 0
then the problem contains an arc X → τ with capacity
c(X), and if c(X) < 0 then the problem contains an arc
σ → X with capacity |c(X)|.) The maximum flow of this
flow network matches all possible production with all possi-
ble consumption in a manner consistent with the precedence
constraints. An RTN and associated flow problems for find-
ing Lmax(t) and Lmin(t) are shown in Figure 1. The set
of events reachable in the residual flow network is a prede-
cessor set (since the infinite pipes resulting from the anti-
precedes relation always have residual capacity), and is de-
noted Pmax(t). Lmax(t) is justified by scheduling all pend-
ing events in Pmax(t) before t, and all other pending events
after t. The tightness of the bound is guaranteed by proving
that adding the constraints that force these activities to occur
before or after t is consistent with the original STN.

(a) Resource Temporal Network

A

<[1,10],-1>

C
B D[1,1] [0,∞] [1,1]

<[2,11],-1> <[3,12],+1><[2,11],+1>

W

<[1,10],-1>

Y
X Z[1,1] [0,∞] [1,1]

<[2,11],-1> <[3,12],+1><[2,11],+1>

τ σ

(b) Flow to find Lmin(9).

C
B

Y

X

∞
D

Z

∞

∞
∞

(c) Flow to find Lmax(10).

1
1

1
1

1
1

τ σ

C
B

Y
X

∞
D

Z

∞

∞
∞

1
1

A

W

∞

∞

1

1

1

1

1

1

Figure 1: An RTN, the flow problem to find Lmin(9), and
the flow problem to find Lmax(10).

In order to find Lmax, (Muscettola 2002) shows that it is
sufficient to find Lmax(t) at the instants I , since the enve-
lope is constant between instants. The maximum flow prob-
lem can be solved using many well-known polynomial time
algorithms; for RTNs with n events, thus, the complexity of
finding Lmax and Lmin is polynomial.

Bounding Above the Envelope of an LRTN
in Polynomial Time

We now show how to extend the use of the above maximum
flow formulation for RTNs in order to bound above Lmax

for LRTNs in polynomial time. Our approach is to chop

the activities into unit pieces, retain the linear resource im-
pact, and use the flow formulation to find Lmax(t) at critical
times, provided the constraints are integer-valued. The key
to this approach is to focus attention on intact schedules at
the instants.

Proceeding along these lines, assume that activity re-
source impact rates ar are provided as inputs, all activity du-
rations ad = 1, and all temporal constraint bounds have inte-
ger values. (Decimal bounds with a fixed number of decimal
places, which are sufficient for many practical problems, can
be reduced to integer bounds by a simple transformation of
units.) Resource rates may be arbitrary real numbers. We as-
sume that the simple temporal constraints of the LRTN are
consistent. Then the following properties hold:

1. The instants I are a (possibly proper) subset of the set of
integers 1..h.

2. At any instant, any activity is either open, closed or com-
pletely pending.

3. For every pair of timepoints E1, E2 the quantity
d(E1, E2) is an integer. Further, d(Ae, Bs) < 0 ⇒
d(As, Bs) ≤ 0⇒ d(Ae, Be) ≤ 0.

4. It follows that for every pair of activities A,B, either
(a) A anti-precedes B, i.e., d(Ae, Be) ≤ 0.
(b) B can follow A, i.e., d(Ae, Bs) ≥ 0.

We now prove two fundamental results that will allow us
to design an algorithm for bounding above Lmax.

Theorem 1 Consider a consistent LRTN with integer tem-
poral constraints and unit durations (ad = 1). Then
for every predecessor set S, we have maxA∈S Aelb ≤
minB 6∈S Bsub. Moreover, for all times t such that
maxA∈S Aelb ≤ t ≤ minB 6∈S Bsub, there is a consistent
schedule G intact at t such that every activity A ∈ S has
AG

e ≤ t and every activity B 6∈ S has t ≤ BG
s .

Proof: Let S be a predecessor set. Suppose
maxA∈S Aelb > minB 6∈S Bsub. Then there are activities
A ∈ S and B 6∈ S such that Aelb > Bsub. It follows that
d(Ae, Bs) < 0. By property 4, this implies A anti-precedes
B. Since S is a predecessor set, that means B is in S, which
is a contradiction. Thus, maxA∈S Aelb ≤ minB 6∈S Bsub.

Now let t be any time such that maxA∈S Aelb ≤ t ≤
minB 6∈S Bsub. If there are no completely pending activities
at t the result follows trivially, so assume there is some com-
pletely pending activity. Suppose we add new constraints
that force all activities in S to end before t, i.e. ∀A ∈ S
add the constraint Ae ≤ t, and force all the activies not in
S to start after t, i.e. ∀B 6∈ S add the constraint t ≤ Bs.
Assuming the resulting STN is consistent, these constraints
are sufficient to ensure that there is a consistent schedule G
such that every activity in A ∈ S has AG

e ≤ t and every
activity B 6∈ S has t ≤ BG

s , and hence G is intact at t.
Suppose the resulting STN is not consistent. Then there is

some simple (no repetitions) negative cycle that involves the
new constraints. Note that the negative cycle must involve
at least two of the added constraints, since each of the new
constraints is individually consistent with the pre-existing
network. Moreover, since the negative cycle has no repeated

nodes, and each of the added constraints involves t, the no-
good must include exactly two of the new constraints, one
added upper bound (from an activity A in S) and one added
lower bound (from an activity B not in S), i.e, the nogood
includes Ae

0← t
0← Bs. Since this portion of the nogood

adds up to 0, the rest of the nogood (the path from Ae to Bs

in the original network) must be negative. By property 4,
this is only possible if A anti-precedes B, which contradicts
the fact that B is not in S. 2

Corollary 1.1 For every predecessor set S, there is an in-
stant t ∈ I for which there is a consistent schedule G intact
at t such that every activity A ∈ S has AG

e ≤ t and every
activity B 6∈ S has t ≤ BG

s .

Proof: Note that maxA∈S Aelb in the theorem is an instant.
2

Notice that AvailG(t) for an intact schedule at an instant
t ∈ I depends only on which activities are scheduled to end
before t, so all the consistent intact schedules for a particular
set constrained to occur before t will have the same avail-
ability at t. We next show that we can find Lmax(t) where t
is an instant by only considering the intact schedules.

Lemma 1 Suppose a schedule G′ is derived from a sched-
ule G by moving a producer activity earlier, or a consumer
activity later (and no other changes). Then AvailG(t) ≤
AvailG′(t) for all t.

Proof: Let A be the activity that is moved. We will just
consider the producer case. (The consumer case is similar.)
The contribution of A to the availability at t depends only
on the fraction of A that precedes t. This can only stay the
same or increase if A is moved earlier. 2

Note that AvailG(t) is well-defined even if G is an incon-
sistent schedule, and the lemma still applies in that case.

Note also that a set of activities that all have the same start
and end times may be treated as a single activity as far as the
lemma is concerned provided they are moved as a unit. In
this case, the set of activities may be considered to be a net
producer if the rates of the individual activities sum to a non-
negative quantity, and a net consumer otherwise.

Theorem 2 Consider a consistent LRTN with integer tem-
poral constraints and unit durations (ad = 1). For any con-
sistent schedule G, for all instants t ∈ I there is a consistent
schedule G′ such that G′ is intact at t and AvailG(t) ≤
AvailG′(t).

Proof: Consider any consistent schedule G and instant
t ∈ I . Let t0, . . . , tm−1 be the activity start times in the open
interval (t − 1, t) in increasing order, and set tm = t. Let
G0 = G. We define a sequence of schedules Gi, 1 ≤ i ≤ m,
which are not necessarily consistent.

To construct Gi+1 from Gi:
1. Calculate ri =

∑
A|AGi

s =ti
ar.

2. If ri < 0 then reassign all activities A starting at ti to start
at ti+1. Otherwise, if ri ≥ 0 then reassign all activities A
starting at ti to start at t− 1.
Since all activities have unit duration, by Lemma 1, each

Gi+1 has equal or higher availability at t than Gi.

We now show that each move preserves the activity order-
ing induced by G, i.e., if AGi

s ≤ BGi
s then A

Gi+1
s ≤ B

Gi+1
s .

If AGi
s = BGi

s , then if A and B are moved, they are moved
together. If AGi

s < BGi
s then the amount of any movement

of A and B towards each other does not exceed their sepa-
ration BGi

s −AGi
s so the ordering is not changed. Thus, the

(non-strict) start ordering is the same for all the Gi. The end
time ordering is the same as the start time ordering.

Note that as a result of the movements, no activities in
Gm start in the interior of the interval [t − 1, t]. Thus, the
last schedule Gm is intact at t with all activity orderings the
same as they were in G. Note that since G is a consistent
schedule, it respects the anti-precedence orderings, so Gm

does also (even though it may not itself be consistent.) By
construction, the set of activities scheduled to end prior to or
at t in Gm determines a predecessor set whose net availabil-
ity AvailGm

(t) equals or exceeds AvailG(t).
Also, note that if As < t in G, then Aslb ≤ t−1 (since the

constraints, and hence the bounds, are integer-valued), and
so Aelb ≤ t (because of unit durations). Similarly, if Bs >
t− 1 in G, then t ≤ Bsub. Thus, Theorem 1 guarantees that
there is a consistent schedule G′ intact at t whose availability
at t equals the net availability of the predecessor set. 2

Corollary 2.1 Consider a consistent LRTN with integer
temporal constraints and unit durations (ad = 1). Then for
all instants t ∈ I , at least one schedule G justifying Lmax(t)
is an intact at t schedule.

Proof: Follows by details of construction of G from G′.
2

We have seen that we can find Lmax(t) at the instants
(elements of I) by only considering intact schedules. The
significance of focusing on intact schedules is that the ex-
tended linear nature of the resource impact becomes irrele-
vant and we can use the maxflow approach to determine the
optimum intact schedule. (In the LRTN case, the nodes in
the flow graph correspond to the intact activities rather than
the events as in the RTN framework.)

We next show that L+
max is achieved at an instant (element

of I). A similar result applies to L−
min. We remark that

a local maximum may persist over an interval so achieving
L+

max at an instant does not exclude achieving it at a non-
instant and vice versa.

Theorem 3 Consider a consistent LRTN with integer tem-
poral constraints and unit durations (ad = 1). Then L+

max
is achieved at an instant.

Proof: Consider any schedule G for which L+
max is

achieved at some time t that is not an instant. There are
two cases:

Case 1: Suppose no activities in G are split at t. Let S be
the predecessor set consisting of all activities ending before
or at t. Theorem 1 shows that there is an instant t′ ∈ I and
a consistent schedule G′ intact at t′ such that all activities
A ∈ S end before or at t′ and all activities B 6∈ S are start
at or after t′. Thus, AvailG′(t′) = AvailG(t) = L+

max.
Case 2: Suppose there is some activity split at t. Let T

be the set of all such activities. We use a clearing technique
similar to the proof of Theorem 2. Let t0, . . . , tm−1 be the

activity start times in the open interval (t−1, t) in increasing
order, and set tm = t. Let G = G0. We define the sequence
of schedules Gi as follows: To construct Gi+1 from Gi:

1. Calculate ri =
∑

A|AG
s =ti

ar.

2. If ri < 0 then reassign all activities A starting at ti to start
at ti+1. Otherwise, if ri ≥ 0 then reassign all activities A
starting at ti to start at t− 1.

Similar to the proof of Theorem 2, Lemma 1 guarantees
that each Gi+1 has higher or equal availability at t than Gi.
Again, the Gi are not necessarily consistent schedules since
the movements may violate some temporal constraints, but
each move preserves the activity ordering induced by G, and
so respects the anti-precedence relations. Thus, the set S of
activities scheduled to end prior to or at t by the last schedule
Gm, which satisfies AvailGm

(t) ≥ AvailG(t), is a prede-
cessor set. Theorem 1 and its corollary then guarantees that
there is a consistent schedule G′ whose availability at some
instant t′ ∈ I equals AvailGm

(t).
Since AvailG(t) = L+

max, the result follows.
2

Suppose we are given a consistent LRTN with integer
temporal constraints and activity durations ad consisting of
integer constants. Suppose also that all activity rates ar are
specified. The following algorithm finds a bounding-above
approximation of Lmax and a bounding-below approxima-
tion of Lmin that is tight at the instants:

1. Split each activity A into ad unit activities and impose
the necessary temporal constraints to preserve solutions.
Note that splitting may increase the number of instants,
but it will always be less than the horizon size h as a crude
bound. 3 Compute the AllPairs shortest-path graph for the
STN (to derive the anti-precedes relations).

2. At each integer instant i ∈ I , pose the following flow
problem to find Lmax(t): denote the set of completely
pending activities PA(i) and let A,B ∈ PA(i). If activity
A anti-precedes B then the flow problem contains an arc
A→ B with infinite capacity. If ar > 0 then the problem
contains an arc σ → A with capacity ar. If ar < 0 then
the problem contains an arc A→ τ with capacity |ar|. To
construct the flow problem to find Lmin(t), if ar > 0 then
the problem contains an arc A→ τ with capacity ar, and
if ar < 0 then the problem contains an arc σ → A with
capacity |ar|.

3. As noted earlier, the set of reachable activities in the resid-
ual flow network is a predecessor set. Lmax(t) (resp.
Lmin(t)) is justified by the schedule ensuring all of these
activities end before t. There is a consistent schedule sat-
isfying this property by Theorem 1, and there is an intact
schedule by Corollary 2.1.

The computational complexity of this algorithm is
O(n3h3) where h is the end horizon. If there are n activ-
ities in the LRTN, then at worst there are nh activities af-
ter transforming the LRTN in Step 1 of the algorithm. The

3An alternative bound to h is O(nD) where D = maxA∈Aad

is the largest original duration.

AllPairs propagation using Floyd-Warshall or Johnson’s Al-
gorithm is thus O(n3h3) (Cormen et al. 2001), and simple
implementations of the Maximum Flow are O(nm) where
m is the number of edges in the flow graph. Using the incre-
mental envelope calculation of (Muscettola 2004) reduces
the complexity of all of the flow calculations to O(n3h3).

Finding L−max and L+
min in Polynomial Time

The argument developed in the previous section does not ap-
ply to L−

max or L+
min. Consider a simple LRTN as shown in

Figure 2. We see that L−
max is determined by two sched-

ules, one with decreasing availability and one with increas-
ing availability, that intersect at t = 1 1

2 . Even more interest-
ing, we see that L−

max occurs at a time that is not an instant.

0 1 2 3

0

1/2

1

-1

1/2

Lmax

Schedule
B Early

Schedule
A Late

bd =1; br = 1

ad =1; ar = -1

1/2

[0, ∞]

Figure 2: An LRTN for which L−
max does not occur at an

instant.

It is tempting to think that after finding the schedules jus-
tifying Lmax(t) at the instants, we might assemble Lmax at
intermediate times by projecting these schedules forwards
and backwards and taking the intersections. A more com-
plex LRTN is shown in Figure 3. In this case we see that
there can be multiple slope changes between instants. We
also note that the schedule justifying the envelope at times
1 1

3 to 1 2
3 does not justify the envelope at the instants.

While Theorem 3 shows us that we can compute L+
max

by finding Lmax(t) at h instants (and often closer to O(n)
instants), Figures 2 and 3 indicate that it may still be difficult
to compute all of Lmax. It is worth noting that finding L+

max

and L−
min is sufficient to drive sound and complete search: if

L−
min < 0 or L+

max > Rub and all timepoints are ordered or
constrained to be identical, then the flaw is unresolvable, so
we fail and must backtrack. Otherwise, we continue to make
ordering decisions to resolve the flaws. However, finding
L−

max and L+
min can eliminate fruitless branches early, even

before all the ordering decisions have been made.
Local minima may also occur at instants such as the latest

end times of consumers when no other activities are pending.
However, the examples above show that some local minima
of Lmax(t) may occur at non-integer times. We must ac-
count for all local minima of Lmax(t) by finding the times

Lmax

dd =1; dr = 1

cd =1; cr = -2

bd =1; br = 2

ad =1; ar = -1

0
1 1/3

[0, ∞]

[0, ∞]

0 2 32/3

1

2

3

Schedule
A,C Late

Schedule
B,D Early

Schedule
B Early, C Late

Figure 3: An LRTN with multiple slope changes between
consecutive instants.

at which local minima can occur, and finding the envelope
at these times. In order to do so, we need to extend the pre-
vious results we have proved so that they apply to times in
between the instants (elements of I).

Consider an LRTN with integer temporal constraints and
unit durations. Let λ be a real number such that 0 < λ < 1.
We can create a new LRTN by splitting each activity A into
two activities, a prefix AP of duration λ and a suffix AS of
duration 1 − λ and a temporal constraint AS

s = AP
e. We

refer to A as the parent of AS and AP , and the new LRTN
as a λ-chopped LRTN. We will denote the set of activities of
the λ-chopped LRTN by Aλ.

Lemma 2 Consider an LRTN with integer temporal con-
straints and unit durations. Let A,B ∈ Aλ. Then
d(Be, As) < 0 implies A anti-precedes B (i.e., d(Be, Ae) ≤
0). Thus, either A anti-precedes B or B can follow A.

Proof: Let the parents of A and B be A′ and B′, respec-
tively. We distinguish 3 cases:

1. A and B are both prefixes or A and B are both suffixes.
Then d(B′

e, A
′
s) < 0, so A′ anti-precedes B′, and hence

A anti-precedes B.

2. A is a prefix and B is a suffix. Then As = A′
s and Be =

B′
e. Thus, d(B′

e, A
′
s) < 0, so A′ anti-precedes B′, and

hence A anti-precedes B.

3. A is a suffix and B is a prefix. Then either B′ can come
after A′ in which case B can come after A, or A′ anti-
precedes B′. In the latter case, B (prefix of B′) must end
before A (suffix of B′) starts, so A anti-precedes B.

2

Theorem 4 Consider an LRTN with integer temporal con-
straints and unit durations, and suppose S ⊂ Aλ is a prede-
cessor set in its λ-chopped LRTN, for any 0 ≤ λ ≤ 1. Let t
be any time such that maxA∈SAe,lb ≤ t ≤ minB 6∈SBs,ub.
Then there is a consistent schedule G such that G is intact at

t with respect to the λ-chopped activities, and such that ev-
ery activity in A ∈ S has AG

e ≤ t and every activity B 6∈ S
has t ≤ BG

s .

Proof: This is a generalization of Theorem 1. The same
proof technique suffices using Lemma 2, which is a general-
ization of the property 4 preceding Theorem 1. 2

Theorem 5 Consider an LRTN with integer temporal con-
straints and unit durations. For any consistent schedule G
and for all times t, there is a consistent schedule G′ such
that AvailG(t) ≤ AvailG′(t) and such that G′ is intact at t
with respect to the λ-chopped LRTN where λ = t− btc.

Proof: We use a more elaborate version of the clearing
technique of Theorem 2. In this case we clear activities that
are split at either btc or dte. The result of this will be that
the moved activities ultimately end up starting at btc − 1 or
btc or dte.

Consider any schedule G and time t. Since Theorem 2
applies if t is an instant, assume t is not an instant. Let ti be
the activity start times in the closed interval [btc − 1, dte] in
increasing order. (Note the interval spans two units if t is a
non-integer.) We include btc and dte in the sequence even
if there are no activities starting at these times. Suppose
t0, . . . , tm are the elements in the sequence. Let G0 = G.
We define a sequence of schedules Gi (not necessarily con-
sistent) as follows. To construct Gi+1 from Gi:

1. If ti is an integer (e.g.,btc), do nothing (i.e., Gi+1 = Gi).

2. Otherwise, calculate ri =
∑

A|AGi
s =ti

ar. If ri ≥ 0 then
reassign all activities A starting at ti to start at btic. (Note
that btic may be either btc − 1 or btc depending on the
value of ti.) Otherwise, if ri < 0 then reassign all activi-
ties A starting at ti to start at ti+1.

As before, all activities have unit duration, and Lemma 1
guarantees each Gi+1 has higher or equal availability at t
than Gi. The argument that activity ordering is preserved is
identical to Theorem 2.

Note that the Gi are not necessarily consistent schedules
in that they may violate binary temporal constraints between
activities. However, absolute time windows on activity start
times and end times are protected. To see this, note that
activities starting at a time x are ultimately moved either to
bxc or dxe. Since the constraints and hence the time bounds
are integer-valued, if x is within the bounds then both these
values are also within the bounds.

As a result of the movements, no activities are split at btc
or dte in Gm. If t is a non-integer, activities may be split at
t itself in Gm, but only if they start at btc (otherwise they
would cross btc or dte). Note that since G is a consistent
schedule, it respects the anti-precedence orderings, so Gm

does also (even though it may not itself be consistent).
We now form the λ-chopped LRTN where λ = t − btc;

thus every AP has duration t−btc and every AS has duration
dte − t. Let S be the set of λ-chopped activities A such that
AGm

s ≤ t; we observe that S is a predecessor set in the λ-
chopped LRTN.

We next show that t lies in the “sweet spot”
maxA∈S Aelb ≤ t ≤ minB 6∈S Bsub for S required by The-

orem 4. This follows from the fact noted above that abso-
lute time windows on activity start times and end times are
protected in the Gi. Thus, if a chopped activity A ends up
before t (i.e., in S), then we must have Aelb ≤ t. Similarly,
if B ends up beyond t then t ≤ Bsub.

Thus, we can apply Theorem 4 to conclude that there is a
consistent schedule G′ such that t separates the activities in
λ from those not in λ. This will have the same availability
at t as Gm. Therefore, it equals or exceeds the availability
of the original schedule G0 at t. 2

Theorem 5 justifies using the maximum flow formulation
described previously to find (λ-chopped) predecessor sets
that identify Lmax(t) at non-integer times t. However, we
don’t want to survey a large number of times t between a
pair of instants [i, i + 1]. Furthermore, it is an open question
whether there may be an exponential number of changes of
slope of Lmax(t) in the interval [i, i + 1].

We avoid this problem by showing that we can find the
time t at which Lmax achieves a local minimum between a
pair of consecutive integers and the value of the local mini-
mum at the same time by formulating this problem as a lin-
ear program. Observe that every flow problem defined by a
chopped LRTN between a pair of integers i, i+1 is identical
except for the capacities of the pipes from the source or to
the sink, which may vary linearly. We exploit a result proved
in (Muscettola 2002), where the incremental availability is
defined as the contribution to Lmax(t) from the events pend-
ing at t, i.e., those represented in the flow problem.

Theorem 6 Consider the maximum flow problem F derived
from a maximum availability problem at some time t. Then
the incremental availability at t equals the residual capacity
of the source pipes of F in a maximum flow.

Proof: See (Muscettola 2002); this is an easy conse-
quence of the methods of that paper, and is essentially stated
as an intermediate result within the proof of Theorem 1, p.
149. 4 2

The significance of this theorem is that the increment in
resource availability due to the pending activities is equal to
the residual of the source pipes in the maximum flow solu-
tion. Note that “Flow = Capacity − Residual.” Thus, max-
imizing the flow at t is equivalent to minimizing the resid-
ual at t. This means that the minimum over t of the maxi-
mum incremental availability at t can be found by minimiz-
ing over t the minimum residual (over all flows) at t. This
suggests we could find mint(rflow(A+

λ)) by simply mini-
mizing rflow(A+

λ) (i.e., the residual of A+
λ in an arbitrary

flow flow) and letting t vary along with the flow. Since the
constraints in a flow network are linear in both the flows and
the capacities, we can build a linear program to do this.

The relevant flow network is obtained by considering the
λ-chopped activities (where λ = t−btc) that are pending at
t and their anti-precedence relations, and inserting pipes as
discussed previously. Notice that the capacities of the source

4What the argument boils down to is that input flow must equal
output flow, so for the residual set (where the output capacity is
fully used), the unused input capacity must equal the difference of
the input and output capacities.

t-1

i
BS br=5

AS ar=-5

i+1

τ σ∞
5λ

t

BP

BS

AP

AS
5(1-λ)∞∞

5λ

5(1-λ)

t-1 i

DS dr=5

CS cr=-5

i+1

τ σ

t

DSCS
5(1-λ)5(1-λ)

AP

BP

CP

DP

∞

(a) LRTN and the flow problem motivating the LP
used to find Lmax

- with no closed prefixes

(b) LRTN and the flow problem motivating the LP
used to find Lmax

- with closed prefixes

s 1-λ

s 1-λ

Figure 4: The flow problems motivating the LP used to find
L−

max.

and sink pipes will vary linearly with λ since the durations
of the chopped activities vary linearly with λ.

However, we actually want to minimize over λ the to-
tal availability, which is obtained by adding the availabil-
ity from the closed activities to the incremental availability.
Some of the λ-chopped activities will be in the closed set.
Their durations, and hence their resource contributions, also
vary linearly with λ. Thus, we must account for any part of
an activity (in the non-λ-chopped LRTN) that must be com-
pleted by t = i + λ, since these also contribute to Lmax(t).
This is the case for a prefix AP such that Aeub = i + 1; it
must contribute arλ to the objective of the linear program,
even though the prefix does not appear in the flow problem
because it is in the set of closed activities. Examples of these
flows are shown in Figure 4.

We create an LP consisting of variables representing ca-
pacity in the pipes, plus one additional variable, λ, and the
usual flow conservation and capacity constraints. The ca-
pacity constraints are all parameterized by λ. We constrain
0 ≤ λ ≤ 1. We minimize the residual (the excess ca-
pacity of the source pipes) plus the required contributions
of all activities that must end at i + 1: thus, we minimize
rflow(A+

λ) +
∑

A∈A|Aeub=i+1 arλ.
The solution to this LP is, by construction, a time t =

i + λ at which the residual is minimized, and the value of
the residual; Theorem 6 shows us how to calculate Lmax(t)
from this residual. Since the solution minimizes the residual
at t (over all flows at t), it maximizes the flow at t; thus
by Theorem 5, it provides a schedule that justifies Lmax(t).
Thus, the LP solution gives us the local minimum of Lmax

in the interval [i, i + 1].
To find L−

max requires solving at most h LPs derived from
flow problems on the chopped LRTNs. The flow prob-
lems have at most 2nh + 2 nodes and therefore at most
4h2n2+2nh pipes. The LPs, then, have at most 4n2h2+2nh
variables. This leads to a worst-case complexity (assuming
Karmarkar’s algorithm) of O(n6h6) to solve each LP, for a
total complexity of O(n6h7) to find L−

max. To find L+
min,

we use a symmetrical approach.
In closing, we observe that the LP construction shows that

Lmax must be concave between instants; thus, there can be
no local maxima between a pair of instants. We therefore
can construct the entire envelope.

Conclusions and Future Work
We have generalized Resource Temporal Networks to Linear
Resource Temporal Networks (LRTNs). We showed how to
construct tight bounds for resources in LRTNs in polynomial
time in the horizon h and the number of activities n, assum-
ing metric temporal constraint data consists exclusively of
integers.

While this work constitutes proof that a precise character-
ization of the resource availability for networks of activities
with linear resource impact can be constructed in polyno-
mial time, the algorithm described here may not be of imme-
diate practical use because of the potentially large number of
activities resulting from the chopping to unit durations. We
believe the approach described here can be improved con-
siderably by splitting activities only as needed in order to
guarantee the existence of a dominating intact schedule. A
formal analysis may eliminate the dependence of the com-
plexity on the time horizon h. A side benefit of this would be
to make more plausible claims that the approach can be ap-
plied to problems with rational data in temporal constraints;
extensions to real numbers in temporal constraints may be
a more difficult goal to achieve. A large source of com-
plexity is the LP method used to compute the local minima,
which may be more costly than maxflow algorithms. This
suggests it may be fruitful to seek a maxflow-like algorithm
that would directly solve a parameterized flow problem with
linearly varying capacities.

In this paper we have assumed rates and activity duration
are provided as inputs. Allowing rates or durations to vary
requires further work. In this context, the class of LRTNs
may need to be adapted so that plan quality is an explicit
function of activity duration; this would provide motivation
for a scheduler to search over activity duration.

More work is needed to analyze the best approach for
solving search problems. The approach described in (Frank
2004) enables more pruning of the search than that of
(Muscettola 2002), at higher cost. Presumably the same
approach could be of benefit in the context of LRTNs, but

at still higher cost. A tight bound is not necessarily the
best to use in search. When solving scheduling problems,
it is worth comparing approaches that employ the formu-
lation of (Muscettola 2002) to the formulation suggested
here, even when the true problem contains activities with
linear resource impact. While our formulation is precise,
the complexity difference may ultimately make the cheaper
approach more tolerable. Finally, a study on the impact of
the different approaches on schedule flexibility, as is done in
(Policella et al. 2004), is also worthwhile.

References
Ahuja, R.; Magnanti, T.; and Orlin, J. 1993. Network
Flows. Prentice Hall.
Cheng, C., and Smith, S. 1995. A constraint posting
framework for scheduling under complex constraints. In
Joint IEEE/INRIA conference on Emerging Technologies
for Factory Automation.
Cormen, T.; Leiserson, C.; Rivest, R.; and Stein, C. 2001.
Introduction to Algorithms. MIT Press.
Dechter, R.; Meiri, I.; and Pearl, J. 1991. Temporal con-
straint networks. Artificial Intelligence 49:61–94.
Frank, J. 2004. Bounding the resource availability of par-
tially ordered events with constant resource impact. In Pro-
ceedings of the 10th International Conference on the Prin-
ciples and Practices of Constraint Programming.
Jónsson, A.; Morris, P.; Muscettola, N.; Rajan, K.; and
Smith, B. 2000. Planning in interplanetary space: Theory
and practice. In Proceedings of the Fifth International Con-
ference on Artificial Intelligence Planning and Scheduling.
Laborie, P. 2003a. Algorithms for propagating resource
constraints in AI planning and scheduling: Existing ap-
proaches and new results. Artificial Intelligence 143:151–
188.
Laborie, P. 2003b. Resource temporal networks: Definition
and complexity. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence, 948 – 953.
Morris, P.; Muscettola, N.; and Tsamardinos, I. 1998. Re-
formulating temporal plans for efficient execution. In Pro-
ceedings of the 15th National Conference on Artificial In-
telligence.
Muscettola, N. 2002. Computing the envelope for stepwise
constant resource allocations. In Proceedings of the 8th

International Conference on the Principles and Practices
of Constraint Programming.
Muscettola, N. 2004. Incremental maximum flows for fast
envelope computation. In Proceedings of the 14th Interna-
tional Conference on Automated Planning and Scheduling.
Policella, N.; Smith, S.; Cesta, A.; and Oddi, A. 2004.
Generating robust schedules through temporal flexibility.
In Proceedings of the 14th International Conference on Au-
tomated Planning and Scheduling.

